

Report 2: API Good Practice

Good Practice for provision of and
consuming APIs

Document details

Author: Marieke Guy

Date: April 2009

Version: 0.2 (draft)

Document Name: good_practice_api_ v0.2.doc

Notes:

Acknowledgements

UKOLN is funded by the MLA: The Museums, Libraries and Archives Council, the Joint Information
Systems Committee (JISC) of the Higher and Further Education Funding Councils, as well as by
project funding from the JISC and the European Union. UKOLN also receives support from the
University of Bath where it is based.

The project team are grateful to all those who gave up time to help with the report. Vital to this work
were the people who filled in the questionnaire, those who responded the request for interviews
and everyone else who made documentation available.

This report was commissioned by JISC.

JISC GOOD APIS REPORT 2 GOOD_PRACTICE_API_20090422.DOC APRIL 2009

Table of Contents

1 EXECUTIVE SUMMARY..1

1.1 INTENDED TARGET AUDIENCE ..1
1.2 LICENCE..1
1.3 QUOTATIONS USED IN THE REPORT ..1

2 GOOD PRACTICE FOR PROVISION OF APIS ..1

2.1 PLAN...1
2.2 GATHER REQUIREMENTS ...2
2.3 MAKE IT USEFUL..2
2.4 KEEP IT SIMPLE ...2
2.5 MAKE IT MODULAR...3
2.6 FOLLOW STANDARDS...3
2.7 USE CONSISTENT NAMING STRUCTURES ..3
2.8 MAKE IT EASY TO ACCESS ...4
2.9 LET DEVELOPERS KNOW IT EXISTS...4
2.10 VERSION CONTROL..4
2.11 PROVIDE DOCUMENTATION ..4
2.12 ERROR HANDLING ...6
2.13 PROVIDE IT IN DIFFERENT LANGUAGES ...6
2.14 MAKE SURE IT WORKS...6
2.15 FEEDBACK...6
2.16 MAINTAIN YOUR API ..7

3 GOOD PRACTICE FOR CONSUMING APIS..7

3.1 CHOOSE CAREFULLY ...7
3.2 RISK MANAGEMENT ...8
3.3 DOCUMENT ...9
3.4 SHARE ..9
3.5 RESPECT ..9
3.6 CLARITY..10
3.7 UNDERSTAND TECHNOLOGY LIMITATIONS ...10
3.8 KEEP IT SIMPLE ...10

4 ACKNOWLEDGEMENTS ..11

JISC GOOD APIS REPORT 1 GOOD_PRACTICE_API_20090422.DOC APRIL 2009

JISC Good API Report

A review of good practice in the provision of machine
interfaces and use of services

1 Executive Summary

This report is the second of two provided to the JISC as deliverables for the Good APIs
project. It provides a number of good practice techniques for provision of and
consuming APIs. The content of this report is based primarily on feedback provided
from the developer community via two consultation mechanisms: an online survey of
and interviews with the HE developer community.

It is anticipated that the good practice elements of this work will be shared with the HE
developer community by chunking into a blog, either the writetoreply.org blogi or the
Good APIs blogii. Each section will be one post, and each post is open to comments
from the public. This approach will probably take place over a specified timescale.

1.1 Intended Target Audience

This report is intended for use by Higher Education development community. It will also
have some relevance for managers by providing them with a better understanding of
the good practice use of APIs in the Higher Education Sector.

1.2 Licence

This report is licensed under a Creative Commons Attribution-Non-Commercial 2.0 UK:
England & Wales Licenceiii.

1.3 Quotations used in the Report

The quotations given in block quote style in this report are from the Good APIs survey.
When conducting the survey it was indicated that all information would be annonymised
and so all quotations are not attributed.

2 Good Practice for Provision of APIs

Developing and provision of APIs can be like most other forms of software development
and many of the best practice techniques are well established. However the API
process, and here we are referring mainly to Web APIs, is also dissimilar from other
forms of development because of the unpredictable nature of APIs. This may mean that
the users and use of an API are unknown. To achieve the goal of well-written and
released API developers will do well to consider the entire API lifecycle from conception
onwards. Best practice can cover areas from the basics aimed at getting more people
using APIs, to general 'etiquette' for API consumers aimed at easing relationships with
API providers.

2.1 Plan

Effective projects require effective planning. Rather than just adding an API to an
existing service/software and moving straight into coding developers should consider
properly planning, resourcing and managing the creation, release and use of APIs.
They need to check that there isn’t already a similar API available before gathering data
or developing something new. Then spend time defining requirements and making sure
they consider the functionality they want the user to access.

JISC GOOD APIS REPORT 2 GOOD_PRACTICE_API_20090422.DOC APRIL 2009

Although formal planning may not always be appropriate in some ‘quick and dirty’
projects some form of prototyping can be very helpful. Some areas that might need
consideration are scale, weighing up efficiency and granularity.

Authors who change their specification or don’t produce an accurate specification in the
first place may find themselves in trouble later on in a project.

You need to implement the same functionality at least 3 times
before you've got enough of a feel for it to be able to factor out an
API for it.

2.2 Gather Requirements

Talking to your users and asking what they would like is just as important in API
creation as user interface creation. At times it may be necessary to second-guess
requirements but if you have the time it is always more efficient to engage with potential
users. Technical people need to ask the user what they are actually after. You could
survey a group of developers or ask members of your team.

The development of a good set of APIs is very much a chicken-and-
egg situation - without a good body of users, it is very hard to guess
at the perfect APIs for them, and without a good set of APIs, you
cannot gather a set of users. The only way out is to understand that
the API development cannot be milestoned and laid-out in a precise
manner; the development must be powered by an agile fast iterative
method and test/response basis. You will have to bribe a small set
of users to start with, generally bribe them with the potential access
to a body of information they could not get hold of before. Don't fall
into the trap of considering these early adopters as the core
audience; they are just there to bootstrap and if you listen too much
to them, the only audience your API will become suitable for is that
small bootstrap group.

2.3 Make it Useful

When creating an API look at it both from your own perspective and from a user’s
perspective, offer something that can add value or be used in many different ways. One
option is to consider developing a more generic application from the start as it will open
up the possibilities for future work. Anticipate common requests and optimise your API
accordingly. Open up the functions you're building.

Get feedback from others on how useful it is. Consider different requirements of
immediate users and circumstances against archival and preservation requirements.

Collaborating on any bridges and components is a good way to help developers tap into
other team knowledge and feedback.

2.4 Keep it Simple

The adage “complex things tend to break and simple things tend to work” has been
fairly readily applied to the creation of Web APIs. Although simplicity is not always the
appropriate remedy, for most applications it is the preferred approach. APIs should be
about the exposed data rather than application design.

Keep the specifications simple, especially when you are starting out. Documenting
what you plan to do will also help you avoid scope creep. Avoid having too many fields
and too many method calls. Offer simplicity, or options with simple or complex levels.

JISC GOOD APIS REPORT 3 GOOD_PRACTICE_API_20090422.DOC APRIL 2009

Developers should consider only adding API features if there is a provable extension
use case. One approach might be to always ask "do we actually need to expose this via
our API?".

A good API will be easy to use and hard to misuse.

2.5 Make it Modular

It is often better to create an API that has one function and does it well rather than an
API that does many things. Good programming is inherently modular. This allows for
easier reuse and sustains a better infrastructure.

Another problem is that methods sometimes aren't quite
configurable enough. Sometimes there is a simple method which
will do the job nine times out of ten and then a similar but more
advanced, more difficult to use method which offers extra
functionality -- this is a good solution to the problem.

The service should define itself and all methods available. This means as you add new
features to the API, client libraries can automatically provide interfaces to those
methods without needing new code.

It is not enough to put a thin layer on top of a database and provide
a way to get data from each table separately. Many common
pieces of information can only be retrieved in a useful way by
relating data between tables. A decent API would seek to make
retrieving commonly-related sets of data easy.

2.6 Follow Standards

It is advisable to follow standards where applicable. If possible it makes sense to piggy-
back on to accepted Web-oriented standards and use well know standards from
international authorities: IEEE, W3C, OAI or from successful, established companies.
You could refer to the W3C Web Applications Working Groupiv. Where an existing
standard isn't available or appropriate then be consistent, clear, and well-documented.

Although standards are useful and important it is crucial that you don’t get bogged
down by them. Some standards may be difficult to interpret or not openly available.
Innovation is sometimes more important than standards.

Having a hand-designed XML (<records><record><mymagictitle>...)
response is much less attractive than reusing standards such as
Dublin Core, SIOC, SKOS, Bibliontology and so on.

2.7 Use Consistent Naming Structures

Use consistent, self explanatory method names and parameter structures, explicit
name for functions and follow naming conventions. For example, similar methods
should have arguments in the same order. Developers who fail to use naming
conventions may find that their code is difficult to understand, other developers find it
difficult to integrate and so go elsewhere. Naming decisions are important, and there
can be multilingual and cultural issues with understanding names and functionality so
check your ideas with other developers.

JISC GOOD APIS REPORT 4 GOOD_PRACTICE_API_20090422.DOC APRIL 2009

2.8 Make it Easy to Access

External developers are important, they can potentially add value to your service so you
need to make it easy for them to do so and make sure that there is a low barrier to
access. The maximum entry requirements should be a login (username and password)
which then emails out a link.

If it is for a specific institution and contains what could be confidential information then it
will need to contain some form of authentication that can be transmitted in the request.

If you need to use a Web API key make it straightforward to use. You should avoid the
bottle neck of user authorisation, an overly complex or non-standard authentication
process. One option is publish a key that anyone can use to make test API calls so that
people can get started straight away. Another is to provide a copy of the service for
developers to use that is separate from your production service. You could provide a
developer account, developers will need to test your API so try to be amenable. If you
release an open API then it needs to be open.

Make sure you support Linked Data. Also publish resources that reflect a well-
conceived domain model and use URIs that reflect the domain model.

2.9 Let Developers Know it Exists

Making sure that potential users know about your API is vital. You could consider the
following:

 Contact your development community using email, RSS, Twitter and
any other communication mechanisms you have available.

 Write about your API on developer forums. Make sure that you follow
this up by having some of your developers monitoring the forum and
answering questions.

 Publish a listing for your API on Programmable Web.

 Blog about your API.

 Make yourself known. Twitter and chat about APIs with other
developers you’ll get a name as a developer and people will be
interested when you release APIs.

 Add a “developers” link in the footer of your Web site. If you have
released a number of APIs then the developer section of your site a
comprehensive microsite with useful documentation.

 Link to working third-party applications that use your API, or third-party
libraries that access it.

2.10 Version Control

Deal with versioning from the start of your project. Ensure that you add a version
number to all releases and keep developers informed. Either commit to keeping APIs
the same or embed in version numbers so that applications can continue to use earlier
versions of APIs if they change. You could use SourceForge or a version repository to
assist.

2.11 Provide Documentation

Although a good API should be, by its very nature, intuitive and theoretically not need
documentation it is good practice to provide clear useful documentation and examples
for prospective developers. This documentation should be well written, clear and full.
Inaccurate, inappropriate or documentation of your API is the easiest way to lose users.

JISC GOOD APIS REPORT 5 GOOD_PRACTICE_API_20090422.DOC APRIL 2009

A key to using APIs effectively is the understanding of the key
concepts they are based around and the types of interaction they
are designed to facilitate. API documentation should not forget this
high-level conceptual view as part of the orientation.

Developers should give consideration to including most, if not all, of the following:

 Information on and links to related functions

 Worked examples and suggestions for use. The examples should be
easy to clone, from different programming languages.

 Case studies. Real world examples in real world languages: PHP Java
Ruby, python etc.

 Demos – if you want to entice someone to use your API you need
good examples that can be re-used quickly. Provide a ‘Getting started’
for guide.

 Tutorials and walkthroughs

 Documentation for less technical developers

 A trouble shooting guide

 A reference client/server system that people can code against for
testing and possibly access to libraries and example code

 Opportunities for user feedback, on both the documentation and the
API itself

 Migration tips

 A clear outline of the terms of service of the API. e.g. This is an
experimental service, we may change or withdraw this at any time" or
"We guarantee to keep this API running until at least January 2012"

 Any ground rules.

 An appendix with design decisions. Knowing why an API developed
the way it did can often help a new developer understand the interface
more rapidly.

Good documentation is effectively a roadmap of the API that helps to orientate a new
developer quickly. It will allow others to pick up and run with your API. Providing it on
release of your API will result in less time spent taking support calls.

Human effort is generally more expensive than compute cycles.
Beyond a certain point, spending development effort optimising your
documentation will be cheaper for the community as a whole than
optimising your system.

Other suggestions include using a mechanism that allows automatic extraction of the
comments, such as Javadocv and providing inline documentation that produces
Intellisense-typevi context-sensitive help.

If an API has changed but the documentation hasn't been updated
then you can easily waste any amount of time before you realise
that the instructions you're following don't match up to the pieces
you got, IKEA-style.

JISC GOOD APIS REPORT 6 GOOD_PRACTICE_API_20090422.DOC APRIL 2009

2.12 Error Handling

Providing good error handling is essential if you want to give the developers using your
API an opportunity to correct their mistake. Error messages should be clear and
concise and pitched at the appropriate. Messages such as "Input has failed" are highly
unhelpful and unfortunately fairly common. Avoid:

• Inconsistency (e.g. different variable order in similar methods)

• Over-general error reporting (a single exception object covering a number of
very different possible errors)

Log API traffic with as much context as possible to deal with resolution of errors.

Provide permanently addressable status and changelog pages for your API; if the
service or API goes down for any reason, these two pages must still be visible,
preferably with why things are down.

2.13 Provide it in Different Languages

A simple Web API is usually REST/HTTP based, with XML delivery of a simple schema
e.g. RSS. You may want to offer toolkits for different languages and support a variety of
formats (e.g. SOAP, REST, JSON etc.).

Try to provide APIs in XML format then it can also be read by other devices such as
kiosks and LED displays. Making returned data available in a number of format (e.g.
XML, JSON, PHP encoded array) it saves developers a lot of wasted time parsing XML
to make an array.

Provide sample code that uses API in different languages. Try to be general where
possible so that one client could be written against multiple systems (even if full
functionality is not available without specialization).

For database APIs, provide a variety of output options - different metadata formats
and/or levels of detail.

2.14 Make Sure it Works

Make your API scalable (i.e. able to cope with a high number of hits), extendable and
design for updates. Test your APIs as thoroughly as you would test your user interfaces
and where relevant, ensure that it returns valid XML (i.e. no missing or invalid
namespaces, or invalid characters).

Embed your API in a community and use them to test it. Use your own API in order to
experience how user friendly it is.

Once you have a simple API, use it. Try it on for size and see what
works, and what doesn't. Add the bits you need, remove the bits
you don't, change the bits that almost work. Keep iterating till you
hit the sweet spot.

2.15 Feedback

Include good error logging, so that when errors happen, the calls are all logged and you
will be able to diagnose what went wrong.

Fix your bugs in public

If possible, get other development teams/projects using your API early to get wider
feedback than just the local development team. Engage with your API users and

JISC GOOD APIS REPORT 7 GOOD_PRACTICE_API_20090422.DOC APRIL 2009

encourage community feedback. Provide a clear and robust contact mechanism for
queries regarding the API. Ideally this should be the name of an individual who could
potentially leave the organisation. Provide a way for users of the API to sign up to a
mailing list to receive prior notice of any changes.

An API will need to evolve over time in response to the needs of the
people attempting to use it, especially if the primary users of the API
were not well defined to begin with.

2.16 Maintain your API

Once an API has been released it should be kept static and not be changed. If you do
have to change an API maintain backwards compatibility. Contact the API users and
warn then well in advance and ask them to get back to you if changes affect the
services they are offering. Provide a transitional frame-time with deprecated APIs
support.

By making the API's network aware and destination-agnostic you
enhance an API’s usability.

Logging the detail of API usage can help identify the most common types of request,
which can help direct optimisation strategies. When using external APIs it is best to
design defensively: e.g. to cater for situations when the remote services are unavailable
or the API fails.

Consider having a business model in place so that your API remains sustainable

Understand the responsibility to users which comes with creating
and promoting APIs: they should be stable, reliable, sustainable,
responsive, capable of scaling, well-suited to the needs of the
customer, well-documented, standards-based, and backwards
compatible.

3 Good Practice for Consuming APIs

Although consumption of third-party APIs means a developer is working with someone
else’s code there are a number of good practice techniques that they can use to make
for a smoother implementation. These include:

3.1 Choose Carefully

Choose the APIs you use carefully. You can find potential APIs by signing up to RSS
feeds, registering for email notifications for when new APIs are released, checking
forums and searching API directories.

A decision on using an API can be made for a number of reasons (it’s the only one
available, we’ve been told to use it etc.) but developers should consider checking the
following:

 That it is the best fit for your needs. There may well be other APIs out there that
are more appropriate. Good research is very important as it is more than likely that
for popular APIs someone has probably done the hard work and produced a
library for your language of choice. That said it is possible that you might have to
compromise.

JISC GOOD APIS REPORT 8 GOOD_PRACTICE_API_20090422.DOC APRIL 2009

 What the API does. Spend some time finding out.

 How good the documentation is. Check that the documentation correctly matches
the API being used. Request sample application code that communicates with the
API. Initially commercial software vendors were reluctant to provide good well
documented services often only provided simple data transaction services. Good
documentation is now accepted as critical.

 That the APIs is connected to a functional description, i.e. an overall description of
the function of the entire application.

 That there is a dialogue with the developers such as a forum or email list. This will
help establish if there is continued support for bug fixes etc.

 That this API does not clash with each others you are using and will be able to
‘keep in step’.

 That it is a stable API. APIs that are still evolving are liable to change.

 How reliable it is. Some API providers have a better reputation than others.

 How popular it is. Popular APIs tend to have an active user community.

 If it is still managed. APIs which are not currently managed are unlikely to be
supported.

 If selecting a product with APIs offered as part of the package ensure you
evaluate the APIs too.

 What has it been coded in.

 A roadmap explaining the likely direction of future developments, if any.

Study various information sources for each potential API. These could include tutorials,
online forums, mailing lists and online magazine articles offering an overview or
introduction to the technology as well as the official sources of information. There are
also a number of user satisfaction services available such as getsatisfactionvii or
uservoiceviii. The JDocsix Web site maintains a searchable collection of Java related
APIs and allows use comments to be added to the documentation. You may find that
others have encountered problems with a particular API.

Once you have chosen an API it may be appropriate to write a few basic test cases
before you begin integration.

If you're not paying for an API then make sure that the API is part of the providers core
services which they use themselves. If the provider produces a custom service just for
you then if they're not being paid then they have no incentive to keep that API up to
date.

When using APIs from others, do a risk assessment. Think about what
you want for the future of the application (or part thereof) that will
depend on the API, assess its value and the cost of losing it
unexpectedly during its intended lifespan, guesstimate how likely it will
be that the API will change significantly or become unavailable/useless
in that time span. Think about an exit strategy. Consider intermediary
libraries if they exist (e.g. for mapping) to allow a ready switch from one
API to an equivalent. Build flexibly if it's worth the extra effort.

3.2 Risk Management

When relying on an externally hosted service there can be some element of risk such
as loss of service, change in price of a service or performance problems. Some
providers may feel the need to change APIs or feeds without notice which may mean

JISC GOOD APIS REPORT 9 GOOD_PRACTICE_API_20090422.DOC APRIL 2009

that your applications functionality becomes deprecated. This should not stop
developers from using these providers but means that you should be cautious and
consider providing alternatives for when a service is not (or no longer) available.
Developers using external APIs should consider all eventualities and be prepared for
change. One approach may be to document a risk management strategyx and have a
redundancy solution in mind. Another might be to avoid using unstable APIs in mission
critical services: bear in mind the organisational embedding of services. Developing a
good working relationship with the API supplier wherever possible will allow you to
keep a close eye on the current situation and the likelihood of any change.

3.3 Document

When using an external API it is important to document your processes. Note the
resources you have used to assist you, dependencies and workarounds and detail all
instructions. Record any strange behaviour or side effects. Ensure you document the
version of API your service/application was written for.

Bench mark the API's you use in order to determine the level of service you can expect
to get out of them.

3.4 Share

It could be argued that open APIs work because people share. Feeding back all you
learn into the development community should be a usual step in the development
process.

APIs providers benefit from knowing who use their APIs and how they use them. You
should make efforts provide clear, constructive and relevant feedback on the code
(through bug reports), usability and use of APIs you engage with. If it is open source
code it should be fairly straightforward to improve an API to meet your needs and in
doing so offer options to other users. If you come across a difficulty that the
documentation failed to solve then either update the documentation, contact the
provider or blog about your findings (and tell the provider). Publish success stories and
provide workshops to showcase what has and can been achieved. Sharing means that
you can save others time. The benefits are reciprocal.

If you find an interesting or unexpected use of a method, or a common
basic use which isn't shown as an example already, comment on its
documentation page. If you find that a method doesn't work where it
seems that it should, comment on its documentation page. If you are
confused by documentation but then figure out the intended or correct
meaning, comment on its documentation page.

Sharing should also be encouraged internally. Ensure that all the necessary teams in
your institution know which APIs are relevant to what services, and that the
communications channels are well used. Developers should be keeping an eye on
emerging practice; what's ‘cool’ etc. Share this with your team.

Feedback how and why you are using the API too, a lot of the time, service providers
are in the dark about who is using their service and why, and being heard can help
guide the service to where you need it to be, as well as re-igniting developer interest in
pushing on the APIs.

3.5 Respect

When using someone else’s software it is important to respect the terms of use. This
may mean making efforts to minimise load on the API providers servers or limiting the
number of calls made to the service (e.g. by using a local cache or returned data, only
refreshed once a given time period has expired). Using restricted examples while

JISC GOOD APIS REPORT 10 GOOD_PRACTICE_API_20090422.DOC APRIL 2009

developing and testing is a good way to avoid overload the provider's server. There
may also be sensitivity or IPR issues relating to data shared.

Note that caching introduces technical issues. Latency or stale data could be a problem
if there is caching.

3.6 Clarity

Certain issues should be clarified before use of an external API. The two key matters
for elucidation are data ownership and costing. You should be clear on which items will
be owned by the institution or Web author and which will be owned by a third party.
You should also be clear on what the charging mechanism will be and the likelihood of
change.

These matters will usually be detailed in a terms of use document and the onus is on
you as a potential user to read them. If they are not explained you should contact the
provider.

3.7 Understand Technology Limitations

API providers have technical limitations too and a good understanding of these will help
keep your system running efficiently. Think about what will happen when the backend
is down or slow and make sure that you cache remote sources aggressively. Try to
build some pacing logic into your system. It's easy to overload a server accidentally,
especially during early testing. Ask the service provider if they have a version of the
service that can be used during testing. Have plans for whenever an API is down for
maintenance or fails. Build in timeouts, or offline updates to prevent a dead backend
server breaking your application. Make sure you build in ways to detect problems.
Providers are renowned for failing to provide any information as to why they are not
working.

Write your application so it stores a local copy of the data so that when the feed fails its
can carry on. Make this completely automatic so the system detects for itself whether
the feed has failed. However, also provide a way for the staff to know that it has failed.
I had one news feed exhibit not update the news for 6 months but no one noticed
because there was no error state.

You will also need to be weary of your own technology limitations. Avoid overloading
your application with too many API bells and whistles. Encourage and educate end
users to think about end-to-end availability and response times. If necessary limit sets
of results. Remember to check your own proxy, occasionally data URLs may be
temporarily blocked because they come from separate sub-domains.

Other technology tips include remember to register additional API keys when moving
servers.

3.8 Keep it Simple

When working with APIs it makes sense to start simple and build up. Think about the
resources implications of what you are doing. For example build on top of existing
libraries: Try and find a supported library for your language of choice that abstracts
away from the details of the API. Wrap external APIs, don't change them as this will be
a maintenance nightmare. The exception here is if your changes can be contributed
back and incorporated into the next version of the external API. APIs often don’t
respond the way you would expect, make sure you don't inadvertantly make another
system a required part of your own.

Some things don’t behave as expected: Last.fm Geo API didn’t find
many UK cities!

JISC GOOD APIS REPORT 11 GOOD_PRACTICE_API_20090422.DOC APRIL 2009

When working with new APIs give yourself time. Not all APIs are immediately usable.
Try to ensure that the effort required to learn how to use APIs is costed into your
project and ensure the associated risks are on the project's risk list.

Some Web developers lean towards consuming lean and RESTful API's however this
may not be appropriate for your particular task. SOAP based APIs are generally seen
as unattractive as they tend to take longer to develop for than RESTful ones. Client
code suffers much more when any change is made to a SOAP API.

You can bind to Web services in ASP.NET, resulting in a proxy class
you can manipulate with managed code. Planning how to organize
these beforehand, with appropriate naming conventions, would be
helpful.

4 Acknowledgements

Thanks to all the people who participated in the Good APIs survey and offered support
throughout the project.

Special thanks go to:

• UKOLN Systems Team

• Pete Johnston

• Ian Ibbotson

• Wilbert Kraan

• Tony Hirst

• Sam Easterby-Smith

• Phil Wilson

• Dave Flanders

i Writetoreply.org
http://writetoreply.org/
ii Good APIs blog:
http://blogs.ukoln.ac.uk/good-apis-jisc/

iii Creative Commons Attribution-Non-Commercial 2.0 UK: England & Wales
http://creativecommons.org/licenses/by-nc/2.0/uk/

iv W3C WebApps Working Group
http://www.w3.org/2008/webapps/

v Javadoc

http://java.sun.com/j2se/javadoc/

vi http://en.wikipedia.org/wiki/IntelliSense

vii Getsatisfaction
http://getsatisfaction.com/

viii Uservoice
http://uservoice.com/

JISC GOOD APIS REPORT 12 GOOD_PRACTICE_API_20090422.DOC APRIL 2009

ix JDocs
http://www.jdocs.com

x Risk Assessment For Making Use Of Third Party Web 2.0 Services
http://www.ukoln.ac.uk/qa-focus/documents/briefings/briefing-98/html/

